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Abstract 

In the present study, a full 3D cell-cathode thermo-electric model 
of a 500 kA demonstration cell has been developed. 

In parallel, a non-linear transient wave MHD model for the same 
500 kA demonstration cell, taking into account the shielding effect 
of the optimized geometry of the potshell, has been developed. 

Preliminary results of the impact of the interactions between the 
cell thermo-electric and MHD models are presented. 

Introduction 

In Part 1 of this collaborative work, the authors developed both a 
3D quarter-cell thermo-electric model and a non-linear wave MHD 
model of a 500 kA demonstration cell design [1].  The quarter-cell 
model comprises one quarter of the cell with cathode and anode 
linked together.  The other three quarters of the cell are present by 
virtue of symmetry.  For details on the design of this 500 kA cell, 
see the article published in the magazine Aluminium last year [2]. 

The present collaborative work is also a direct follow-up of the 
work presented in 2002 on the tentative development of a 3D full-
cell and external bus-bar thermo-electric model [3].  At that time, a 
model of a 300 kA demonstration cell design was built but could 
not be solved on the PIII computer then available. 

The need to link together a 3D full-cell thermo-electric model and 
the non-linear wave MHD model into a coupled thermo-electric-
MHD model of an aluminum electrolysis cell has already been 
explained in details previously [4].  The ultimate goal of the current 
collaborative work is to develop such a coupled thermo-electric-
MHD model which would be one of the steps towards the 
development of a complete multi-physics model of an aluminum 
electrolysis cell. 

In this paper, the results of a 3D full-cathode and external bus-bar 
thermo-electric model are presented.  Attempts to calculate thermo-
electric fields in a full-cell and a half-cell model are also discussed.  
A full-cell model is essentially a full-cathode model with the anode 
coupled to it. A half-cell model is one half of the full-cell model, 
the other half is present by virtue of symmetry.   

The non-linear wave MHD model is extended to take into account 
the shielding effect of the detailed and optimized geometry of the 
potshell. Finally, the velocity fields calculated in the MHD model 
are used to define the metal/ledge and bath/ledge local heat transfer 
coefficients in the thermo-electric model. 

3D full-cathode and external bus-bar thermo-electric model 

As demonstrated in [5], in the first approximation, it is not 
necessary to model in detail the anode panel in order to calculate 
the current density in the metal pad when all the anodes are 
carrying nearly equal current.  The position of the ledge, the 
geometry of the block/collector bar connection and the external 
bus-bar design all have more influence on the metal pad current 
density than small resistance discrepancy in the anode network.  
Hence the 3D full-cathode and external bus-bar thermo-electric 
model is sufficient to compute the detailed current density in the 
metal. 

Figure 1 shows the mesh of the 3D full-cathode and external bus-
bar thermo-electric model. For the 500 kA demonstration cell, the 
mesh is made of 354116 finite elements.  Figure 2 shows the 
distribution of the local heat transfer coefficients at the metal/ledge 
and bath/ledge interface for the preliminary run.  This distribution 
is not based on the velocity fields calculated by the MHD model or 
any other velocity field.  It is rather arbitrarily generated by a 
sinusoidal function, which gives a variation along the walls, similar 
to what four flow pools would give. 

A P4 3.2 GHz computer was used to compute the solution.  It took 
17 CPU hours to solve the model in order to perform 3 loops of the 
ledge shape convergence scheme.  The convergence scheme was 
stopped before reaching convergence, as this was not required for 
this preliminary run. 

Figure 3 shows the obtained thermal solution, while Figures 4 and 
5 show the metal pad voltage solution and the metal pad current 
density, respectively.  It can be observed that the resulting ledge 
profile thickness varies along the cell perimeter: the ledge is thicker 
where the local heat transfer coefficient was set low and thinner 
where the local heat transfer coefficient was set high.  As a result, 



the intensity of the horizontal current in the metal pad is not 
uniform along the cell but rather varies from cathode block to 
cathode block depending particularly on the ledge toe variation 
along the cell perimeter. 

 

Figure 1. Mesh of the 3D full-cathode and external bus-bar 
thermo-electric model. 

 

 

Figure 2. Setup of the local heat transfer coefficients pattern at the 
liquids/ledge interface. 

 

 

Figure 3. Thermal solution of the 3D full-cell cathode and 
external bus-bar thermo-electric model. 

 

Figure 4. Voltage solution in the metal pad of the 3D full -
cathode and external bus-bar thermo-electric model. 

 

 

Figure 5. Current density in the metal pad of the 3D full- cathode 
and external bus-bar thermo-electric model. 

 

3D full-cell and external bus-bar thermo-electric model  

Figure 6 shows the mesh of the 3D full-cell and external bus-bar 
thermo-electric model.  That mesh is made of 585016 finite 
elements.  Once again [3], that model could not be solved even on 
the more powerful P4 3.2 GHz computer with 2 GB of RAM.  
Unfortunately, that model is using constraint equations to connect 
the anode panel mesh to the cathode mesh, and it seems that those 
constraint equations are preventing the ANSYS solver to converge. 
However, it is worth noting that the authors are still using a 10 



years old version of ANSYS and it is hoped that improvements 
made to the ANSYS solver since then will ensure convergence. 

 

 
Figure 6. Mesh of the 3D full-cell and external bus-bar thermo-
electric model. 

 

3D half-cell thermo-electric model  

Figure 7 presents the mesh of a 3D half-cell model.  This mesh is 
made of 290410 finite elements.  That model is the biggest model 
with constraint equations that could be solved.  The P4 took 100 
CPU hours to converge with the assumed ledge profile.  Figure 8 
shows the thermal solution obtained.  Of course, with that much 
CPU time required for an assumed ledge profile, it was not 
practical to repeat this 5 – 10 times, the number of iterations 
needed for the calculation of the ledge profile! 

 

 
Figure 7. Mesh of the 3D  half-cell model. 

 

 
Figure 8. Temperature solution of the 3D  half-cell model. 

 

MHD model refinement 

Magnetic field in an aluminium cell is created by the currents in the 
cell itself and from the complex bus-bar arrangement around the 
cell, in the neighboring cells and the return line, and by the effect 
of cell construction steel magnetization.  The magnitude and 
distribution of the magnetic field is of prime importance for 
maintaining a desirable gentle mixing in metal and bath and to 
avoid unstable wave growth with the intense flow and associated 
wall erosion.  The complexity of any practically usable 
magnetohydrodynamic (MHD) model of the cell arises from the 
coupling of the various physical effects: fluid dynamics, electric 
current distribution, magnetic field and thermal field.  

The MHD model presented here accounts for the time dependent 
coupling of the current and magnetic fields with the bath-metal 
interface movement [6].  Ledge profile is assumed given for now.  
Coupling with the thermal model, which will supply ledge profile 
to the MHD model, will be made in near future.  This model 
calculates non-linear waves and turbulent flows in the two liquid 
layers.  The fluid flow and wave model is transient and effectively 
three-dimensional, using for the metal and bath flow the shallow-
layer approximation.  The model couples the waves and the 
electromagnetic field distribution; both, electric and magnetic fields 
are recalculated as the wave shape changes.  Although it has been 
validated against analytical solutions for nonlinear gravity waves 
and against physical models with mercury in the past, it has never 
been tested with real cells because of high cost of measurements 
and because involvement of an aluminium producer would be 
necessary.  We wish that in the future, such validation could be 
done.  

The first calculation step needed for an MHD model is the electric 
current distribution in the busbars.  This is calculated by coupling 
the electric current in the fluid zone to a resistance network 
representing individual anodes and cathode collector bars as well as 
the whole bus-bar circuit between two adjacent cells.  The 
Kirchhoff equations are generated automatically and solved at each 
time step in order to simulate the effect of waves on electrical 
current redistribution in the whole electrical circuit.  The software 
permits adding connections, easily changing bus locations and 
cross-sections, giving the freedom to experiment and optimize the 
bus-bar network.  



In the 500 kA test cell, all electrically independent cathode bus-
bars are connected in 12 sections, each of which takes the current 
from 4 collector bars, and then the upstream and downstream 
counterparts are connected by 6 anode risers to the anode bus-bars.  
The asymmetric bus arrangement for this cell partly compensates 
the return line on the left at x = - 60 m.  There is almost a 50 – 50% 
upstream - downstream current division owing to carefully adjusted 
bus-bar cross-sections.  

The second step in the MHD model is to calculate the magnetic 
field B (called more precisely, magnetic induction), which is 
necessary to determine the electromagnetic force distribution 
within the liquid zone, f = j x B.  The magnetic field B is the sum 
of two contributions: B = BI + BM ; BI is generated by currents and 
BM by ferromagnetic steel material.  The magnetic field BI from the 
currents in the full bus-bar network is recalculated at each time step 
during the dynamic simulation using the Biot-Savart law.  A very 
similar technique is used on the 3D grid within the cell fluid layers 
where a special analytical technique is applied to deal with the 
singularity in the Biot-Savart Law in order to obtain a smooth and 
converging solution when the field calculation position coincides to 
the electric current. 

The calculation of the magnetic field BM from steel requires much 
more effort and cannot be done at each time step; we calculate it 
only once with the steady state current distribution.  The difficulty 
arises because the steel parts of the cell are made of ferromagnetic 
material whose magnetization M (H) depends non-linearly on the 
local magnetic field intensity H in the magnetic material.  The local 
magnetic induction B in the ferromagnetic material is orders of 
magnitude higher than in the non-magnetic material, like air, liquid 
aluminium, bath etc.  Equation (1) gives the relationship between 
magnetic induction, magnetization and magnetic field intensity. 

    )( HMB 0 += µ                                          (1) 

where �
0 is the permeability of vacuum, equal to 4�  x 10-7 (H/m) in 

the International System of Units.  In the non-magnetic material M 
= 0 and  B = �

0 H.  In the magnetic material the unknown magnetic 
field intensity H is related to the magnetization M (H) by the 
material properties of a particular material (depending also on the 
temperature, carbon content in steel, previous magnetization, etc.).  
The typical curves used for the aluminium electrolysis cells are 
discussed in [7].  In order to find the unknown magnetic field 
intensity, we need to solve the integral equation: 
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where the magnetic field HI is given by the Biot-Savart law from 
all the external electric currents, the co-ordinate location r is for the 
field calculation position (observation point), the integration point 
position r’  is in the element volume dV’  running through all the 
ferromagnetic material in Vm.  The iterative solution procedure for 
the equation (2) starts with an assumed distribution of M in the 
ferromagnetic elements, calculates H for these elements, then uses 
M (H) material property to obtain the updated magnetization.  The 
procedure ends when convergence is achieved.  The obvious 
complication is due to the singularity in (2) when the integration 
point coincides with the observation point.  This is a very important 

contribution to the solution and can not be simply discarded; 
instead the analytical singularity elimination is used to give smooth 
results.  

Once the magnetization of steel is known, the magnetic flux density 
B = �

0 H for the fluid zones can be calculated from the equation (2) 
using the observation location r on the computational grid where 
the electromagnetic force distribution is needed.  This method used 
for magnetic field calculation was validated against mercury 
physical models with and without steel parts.  Some validation was 
also carried out on commercial cells.   
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Figure 9. The experimental 500 kA bus-bar: four neighboring 
cells used in magnetic field calculation. 
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Figure 10. The ferromagnetic elements shown for the test cell. 

For the magnetic field computation, the busbar network was 
extended to include four neighboring cells as shown in Figure 9.  
The steel is included as shown in Figure 10.  The steel was divided 
into approximately 30000 nonlinear elements.  Figure 11 shows the 
magnetic field at the liquid metal top level without the effect of 
steel and Figure 12 – with the effect of steel.  The difference 
between the two is considerable (see the legend in the Figures).  

The MHD model uses a relatively rough mesh of 25x45x2 elements 
in order to be able to re-compute the current distribution at each 
time step in a reasonable time.  Nevertheless, the solution is 
sufficiently smooth because of the global pseudo-spectral 
approximation used for the space discretisation permitting much 
higher accuracy in comparison to finite element or finite volume 
approximations on the similar grid size.  



The aluminium-electrolyte interface deformation makes the anode 
currents unequal because of the local ACD change.  The model 
includes an option to account for the time average gradual 
consumption of the anode bottom to conform to the ACD change.  
An artificially accelerated anode burn-out is permitted in order to 
achieve the result in a reasonable computational time interval.  

 

X

Y

0 5 10 15
0

1

2

3

4

BZ: -0.0036 -0.0020 -0.0005 0.0010 0.0025 0.0040
Bx, By =0.0200 (T)

 
Figure 11. The magnetic field calculated without the 
ferromagnetic elements.  
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Figure 12. The magnetic field calculated with the ferromagnetic 
elements. 

A transient MHD simulation is started with the flat metal-bath 
interface and zero velocity.  Then the usual magneto-hydrostatic 
approximation is used to compute the interface deformation as it 
would be if the electric currents are uniform.  This interface 
position is used as the actual initial state.  A time step of 0.2 s was 
used in the simulation shown.  The waves take about 200 - 300 s to 
build up to a constant amplitude as shown in Figure 15.  In a stable 
cell, this would be the time needed to achieve a stationary interface 
position and a corresponding current distribution.  A snapshot of 
the computed metal-bath interface deformation after 1000 s of 
simulation is shown in Figure 13.  Predominantly horizontal re-
circulating flow also grows gradually with time.  A snapshot of the 
velocity patterns and the effective turbulent viscosity distribution at 
1000 s is shown in Figure 14.  
 
The flow is turbulent for the typical conditions of the electrolysis 
cell.  The MHD model presented here uses 2 equation ‘k-� ’ , time 
dependent turbulence model [6] which is solved simultaneously 
with other variables at each iteration.  The highly non-uniform 
distribution of the effective turbulent viscosity is shown by the 
color-filled contour lines in Figure 14.  The regions of high 
turbulent viscosity are associated with enhanced turbulent heat and 
mass transport, which are important for predicting heat loss (ledge 
thickness) and the cell wall erosion. 
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Figure 13. The metal-bath interface at the last time steps of the 
computation. 
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Figure 14. The velocity and the effective turbulent viscosity in the 
liquid metal at the last time step of the computation, t=1000 s. 
 
 
The coupling between pressure and velocities has some special 
effects on the metal-bath interface deformation.  A large scale 
horizontal vortex will create a considerable free surface dip in its 
center.  This is because the circulation pattern in the metal layer is 
different from the one in electrolyte; this creates pressure 
differences across the interface to which the interface adjusts 
vertically.   
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Figure 15. The computed metal-bath interface oscillations at two 
diagonally opposite corners (under anode N1 and anode N40) and 
the voltage oscillation (a); and the corresponding Fourier spectra 
shown with the typical gravity frequencies (triangles) for 
comparison (b). 



The other important effect included in the MHD model is the flow-
induced electric current, resulting from the term σ v x B (σ is the 
electrical conductivity, which is very high for liquid metal, v - 
metal velocity). This effect usually stabilizes the cell fluid 
dynamics because, according to the Lenz’s law, the induced field 
always acts against the mechanical action causing it. 
 
The oscillation patterns beneath the first corner anode and the 
diagonally opposite far corner anode are shown in the top part of 
the Figure 15.  The respective anode currents fluctuate in the same 
manner.  In spite of fairly nice and symmetric circulation patterns, 
shown in Figure 14 for the metal (and a different 4 vortex pattern in 
the bath, not shown here), the wave is not damped as would be 
expected in a stable cell; the oscillations remain at about 1 cm 
amplitude above and below the initial flat surface.  This also gives 
rise to the cell voltage oscillations of a magnitude about 3 mV 
which are shown in Figure 15.  They are the result of the overall 
cell resistance change, caused by the non-uniform ACD changes 
during the wave motion.  The voltage noise is typically observed in 
all commercial cells.  This particular 500 kA demonstration cell, 
evidently, will need a further busbar optimization to make the cell 
more stable.  Reducing the magnetic field magnitude at the 
downstream left corner would certainly help.  We are not 
particularly concerned about this here, because the purpose of this 
article is to present the model and not to design a commercial bus-
bar arrangement.  The Fourier spectrum for this oscillation 
indicates a dominant frequency between the third and fourth 
gravitational frequencies in the full spectrum of the normal gravity 
waves.  As explained in [8], the MHD interaction is responsible for 
the shift from the purely hydrodynamic oscillation frequencies. 
  

First interaction trial between models  

Up to now, the thermo-electric model and the MHD model were 
used completely independently.  In the following run, for the first 
time, the velocity fields calculated by the MHD model in both the 
bath and the metal have been used to set up the local heat transfer 
coefficients at the liquids/ledge interface in the thermo-electric full-
cell-cathode model (see Figure 16). 

Due to time constraints in preparing this paper, however, the metal 
velocity field used is not the one presented in Figure 14, but rather 
a similar one from a previous run.  The equations used to compute 
the local coefficient in this first interaction trial are: 

/ 1841.5 5000metal ledgeh v= +             (3) 

/ 1286.0 5000bath ledgeh v= +             (4) 

where h is in W/m² °C and v is in m/s.  As in the MHD model the 
velocity (v) is set to zero at the ledge surface, the velocity used in 
Equations (3) and (4) is the bulk fluid velocity in the immediate 
vicinity of the ledge surface.  The idea of linear relationship with 
velocity, used in Equations (3) and (4), is taken from the 
experimental work in [9], but the coefficients are different.  The 
coefficients 1841.5 and 1286.0 were selected in order to get 
average values identical to the constant values used before, as 
typical values of the heat transfer coefficients are estimated to be 
around 2000 W/m2K when using the cell liquidus superheat.  The 
choice of the slope is quite arbitrary at this stage but 5000 
(W/m2K)/(m/s) is barely large enough to really significantly affect 
the ledge thickness along the perimeter of the cell considering the 
relatively low velocities in the vicinity of that cell ledge perimeter.  

As reference, base on their experimental work, Nazeri and al. [9] 
are proposing a slope of 3360 (W/m2K)/(m/s).  Unfortunately, 
experimental data, not available to the authors, would be required 
to establish a reliable correlation between the velocity fields in the 
vicinity of the cell ledge perimeter and the local heat transfer 
coefficients at the liquids/ledge interface. 

The calculation of this model on the P4 computer took 32 CPU 
hours to build and solve 11 iterations of the ledge shape 
convergence scheme.  The results are shown in Figures 17, 18 and 
19.   

 

 
Figure 16. Distribution of the local heat transfer coefficients at 
the metal/ledge and bath/ledge interface. 
 
 
 

 
Figure 17. Thermal solution of the 3D full-cathode and external 
bus-bar thermo-electric model. 
 
 

Future work 

The obvious next step would be to use the ledge profile calculated 
by the full-cell cathode thermo-electric model and feed it into the 
MHD model.  Work on this is in progress. 
 



 
 
Figure 18. Voltage solution in the metal pad of the 3D full-
cathode and external bus-bar thermo-electric model 
 
 
 

 
 

Figure 19. Current density in the metal pad of the 3D full-cathode 
and external bus-bar thermo-electric model. 

 

 Conclusions 

A 3D full-cell cathode and external bus-bar thermo-electric model 
was developed and successfully used in interaction with the MHD 
model to calculate the ledge profile all along the cell perimeter. The 
ledge profile convergence calculations took 32 CPU hours on a P4 
3.2 GHz computer.  Once again as before [3], a 3D full-cell and 
external bus-bar thermo-electric model could not be used to do the 
same. Yet this time, it is the ANSYS solver (software) rather than 
the P4 computer (hardware) that has been identified as the 

bottleneck. We hope that more recent versions of the ANSYS 
solver address the problems we reported in this work. 

The MHD model has been improved to obtain a better 
representation for the shielding effect of the potshell. Future work 
is still required to include the computed turbulence effects in the 
heat transfer and ledge formation process in order to have the two 
models fully interacting with each other. 
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