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Abstract 

 

The MHD wave instability in commercial cells for electrolytic 
aluminium production is often described using ‘shallow water’ 
models. The model [1] is extended for a variable height cathode 
bottom and anode top to account for realistic cell features. The 
variable depth of the two fluid layers affects the horizontal 
current density, the wave development and the stability threshold. 
Instructive examples for the 500 kA cell are presented. 

Introduction 

The MHD stability problem for aluminium electrolysis cells is of 
increasing importance due to significant electrical energy costs, 
disruptions in the technology and control of environmental 
pollution rate. The electric current with the associated magnetic 
field, are intricately involved in the oscillation process and a 
possible instability of the interface between liquid aluminium and 
electrolyte. This interaction results in the wave frequency shift 
from the purely hydrodynamic ones (see [2] and references 
therein). Moreau and Evans [3] introduced the linear friction 
model for the wave motion and the horizontal circulation, and 
attempted to introduce models for the electrolyte side channel 
effects on the circulation. Actually, the linear friction and the 
variable bottom effects are used widely in the sea wave 
theoretical studies [4]. The linear friction is a simplification of 
the more general nonlinear bottom friction term appearing in the 
shallow water models, see for example [5].  

The systematic perturbation theory for the shallow layer fluid 
dynamics and, similarly, for the electric current problems, 
permitting to reduce the three-dimensional problem of the 
aluminium cell to a two-dimensional shallow layer problem was 
developed in [6]. This work mathematically proved the wave 
oscillation frequency shift due to the magnetic interaction and the 
possibility of a resonant growth. The wave model  has been 
extended to the weakly nonlinear case using the Boussinesq 
formulation including the linear dispersion terms [7]. The intense 
turbulence generated by the horizontal circulation velocity is a 
critical feature to determine the level of damping friction level. A 
correct damping level permits just a small amplitude self-
sustained oscillations observed in real cells, known as ‘MHD 
noise’. The fully coupled real cell problem requires time 
dependent, extended electromagnetic field simulation including 
the fluid layers, the whole bus bar circuit and the ferromagnetic 
effects [1].  The present paper extends the ‘shallow layer’ theory 

and the complete dynamic MHD model to the cases of variable 
bottom of aluminium pad and the variable thickness of the 
electrolyte due to the anode nonuniform burn-out process and the 
presence of the side channels. 

 
Mathematical model for waves at the interface  

between two liquid shallow layers  

The electric current to the individual cell is supplied from above 
via massive anode bus bars, from which anode rods connect to 
the carbon anodes. The liquid electrolyte layer beneath the anode 
blocks is relatively poor electrical conductor of a small depth (4-5 
cm) if compared to its horizontal extension (4-5 m in width and 
15-20 m in length). The electrolyte density (ρ2 = 2.1e3 kg/m3) is 
just slightly lower than the liquid aluminium (ρ1 = 2.3e3 kg/m3)in 
the bottom layer of typical depth 15–30 cm. The “shallow layer” 
approximation assumes that the horizontal dimensions Lx  and Ly  
are much larger than the typical depth H for each of the layers, 
and, in addition to this, the interface wave amplitude A is 
assumed to be small relative to the depth H. In the present 
extension of the theory for a variable layer depth we will assume 
that the layer deformation is similarly small. Thus the two small 
parameters of the problem are the nondimensional depth δ = H/Ly 
and the amplitude ε = A/H. The resulting fluid dynamic equations 
become two-dimensional after the depth averaging procedure is 
applied to the horizontal momentum equations. The equations for 
the combined horizontal velocity (horizontal circulation u0, plus 
ε-order 

εû wave motion) are: 
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where the continuity of the pressure  at the interface is satisfied 
by introducing the pressure 

0( )p H  at the common interface 

 0 0 /( ) ( , , )H H L x y tδ ε ς= = .                 (3) 

The summation convention is assumed over the repeating indexes 
k (1 or 2, respectively for x, y coordinates). The nondimensional 
variables are introduced using the following typical scales: 

gHu =0
 for the wave velocity; gHL /  for time t, 2

01uρ  for 
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pressure p, IB L0
2/  for the electromagnetic force f ( B0 is 

typical magnetic field magnitude and I the total electric current), 
the relative (to Al layer 1) density ρ = ρi / ρ1. The nondimensional 
parameters are the Reynolds number Re and the electromagnetic 
interaction parameter E: 

0 /Re Lu ν= , 2 2 2
1 0 1( / ) /( / ) /( )o oE IB L u L IB L gρ ρ δ= = . 

The effective turbulent viscosity νe(x,y,t) is computed according 
to the depth averaged versions of empirical turbulence models. 
For our simulations we used a version of k-ω two equation model 
previously validated for various recirculating MHD flows [8]. 
The nonlinear friction at the top and bottom of the fluid layers in 
(2) is defined similarly to general shallow water models [5]: 

1 2 1 ˆ ˆ ˆ( )  i o z e z j f j jH H u dz C u uδ ∂ ν ∂ μ− − −− = =∫Re u .          (4) 

The depth averaged continuity equation can be obtained by a 
similar procedure, giving 

]ˆ)[( jijt uH ες∂ςε∂ −= .                           (5) 

The mathematical solution of the wave problem can be simplified 
considerably by excluding the velocities and obtaining a single 
wave equation for the common interface ζ(x,y,t). This procedure 
was relatively simple for the case when the bottom and top 
surfaces were flat [6]: taking the time derivative of (5) and the 
horizontal divergence of (2). However, for the case of two layers 
with the variable bottom and top this procedure does not work 
straightforward.  The common pressure p(H0) at the interface can 
be eliminated only after the assumption that the top and bottom 
surfaces are varying sufficiently smoothly to satisfy the 
condition: 

( ) ( )j iH O∂ ε= .                                      (6) 

Taking this into account and reverting back (for the final 
numerical solution purpose) to the dimensional quantities, we 
have the wave equation for the aluminium-electrolyte interface 
H(x,y,t) with the variable bottom Hb(x,y) and top Ht(x,y):  
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The previous linear stability models can be recovered from (7) by 
excluding the nonlinear horizontal velocity term, the vertical 
electromagnetic force component fz contribution, and assuming 
the Hb and Ht as constants. The nonlinear equation (7) extends the 
wave description to the weakly nonlinear and slowly varying top 
and bottom cases.  

The horizontal circulation velocities, driven by the rotational part 
of the electromagnetic force, can be calculated by solving the 

equation (2) in the two layers. The numerically efficient 
procedure consists of taking first the curl of the equation (2), then 
to rewrite it for the two-dimensional horizontal flow stream 
function. The solution of the resulting 4th order equation for the 
stream function is sought in combination with the 2-equation 
turbulence model for the effective viscosity [8]. 

Electromagnetic  problem 

Since the magnetohydrodynamic driving force is f = jxB, the 
electric current distribution, particularly the horizontal 
components, are equally important to the magnetic field 
optimization. Physical and engineering considerations suggest 
that both problems are mutually interconnected and should be 
solved interactively. It means that the computer program can use 
the same data input to compute the electric current, voltages, 
temperatures in the bus network, the magnetic field, the current 
distribution within the cell with waving metal interface, then 
finally iterate back to account for the spatially and temporally 
variable cell interpolar distance and the effect on the current 
distribution in the supplying bus network. This affects also the 
magnetic field, the metal pad waves, velocities, and the neighbor 
cells which are interconnected to the particular test cell . 

The electric current distribution is calculated by coupling the 
electric current in the fluid zone to the resistance network 
representing the elements of individual anodes and cathode 
collector bars, as well as the whole bus-bar circuit between two 
adjacent cells. The electric current in the fluid zones is computed 
from the continuous media equations governing the DC current 
(which can change in time with the waves and anode burnout 
process): 

,σ ϕ σ= − ∇ + ×j v B                           (8) 

where the fluid flow induced currents are accounted only in the 
highly conducting liquid aluminium. The electric potential in the 
fluid is governed by the equation: 

  2 ( ),ϕ∇ = ∇ ⋅ ×v B                             (9) 

and the boundary conditions of zero current at the insulating 
walls, given current distribution ja at anodes, jc at cathode carbon.  
ja and  jc are obtained from the linear element resistivity network 
solution, which in turn is coupled to the computed potential 
distribution from the equation (9). At the interface between the 
liquid metal and the electrolyte the continuity of the potential and 
the electric current normal component must be satisfied.  

Since the depths of the liquid layers are extremely small if 
compared to their horizontal extension, the shallow layer 
approximation is very efficient to solve this 3-dimensional 
problem. The solution, for instance in the aluminium layer, can 
be obtained from the following equation: 
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where the aluminium interface H (x,y,t) and the bottom are 
variable. The current distribution at the top and the bottom 
depend on the iterative solution from the linear element network 
of the bus bars, anodes, pins, collector bars, etc. 

Magnetic field in an aluminium cell is created by the currents in 
the cell itself and from the complex bus-bar arrangement around 
the cell, in the neighboring cells and the return line, and by the 
effect of cell construction steel magnetization. The complexity of 
any practically usable magnetohydrodynamic (MHD) model of 
the cell arises from the coupling of the various physical effects: 
fluid dynamics, electric current distribution, magnetic field and 
thermal field. The MHD model presented here accounts for the 
time dependent coupling of the current and magnetic fields with 
the bath-metal interface movement. The magnetic field from the 
currents in the full bus-bar network is recalculated at each time 
step during the dynamic simulation using the Biot-Savart law. A 
very similar technique is used on the 3D grid within the cell fluid 
layers where a special analytical technique is applied to deal with 
the singularity in the Biot-Savart law in order to obtain a smooth 
and converging solution.  

500 kA demonstration cell 

The numerical solution of the described MHD model uses a 
relatively coarse mesh of 64x32x2 and a smooth spectral function 
representation in the space of each fluid layer. This ensures a 
good accuracy solution and enables one to re-compute the 
electromagnetic and fluid dynamic field time dependent 
distribution in a reasonable computational time.  The solution is 
sufficiently smooth because of the global pseudo-spectral 
approximation used for the velocity and interface discretisation, 
which permits much higher accuracy in comparison to finite 
element or finite volume approximations on the similar grid size.  

The aluminium-electrolyte interface and the variable electrolyte 
top makes the anode currents unequal because of the local ACD 
change.  The model includes an option to account for the time 
average gradual consumption of the anode bottom to conform to 
the ACD change.  An artificially accelerated anode burn-out is 
permitted in order to achieve the result in a reasonable 
computational time interval. The importance of this option was 
already demonstrated in the recent study [1], demonstrating a 
significant stabilization effect. 

The present model includes the ability to prescribe the variable 
bottom and top of the cell, and permits to investigate the effects 
on the cell MHD stability. There are two new physical effects: 
the wave propagation in the variable depth layer is changed, and 
the horizontal component of the electric current is increased in 
the narrow part of the layer. The second effect can alter the MHD 
stability. 

 
Figure 1. Metal pad bottom shape (concave). 

 
Figure 2. Metal pad bottom shape (convex). 

Let us consider some examples of the new model application. 
Quite often the cavity of the electrolysis cell is not simply a 
rectangular box, but instead has sloping bottom of a concave 
shape. Figure 1 shows the bottom profile used in some test runs. 
An another type of bottom used in our tests is the convex 
deformation shown in the Figure 2. The top surface of the 
electrolyte is facing the immersed anode, which is often of non-
uniform bottom profile. Additionally the side channels can be of 
importance for the waves and currents. The example of the 
interpolated anode bottom and the side channels is shown in the 
Figure 3.  

 
Figure 3. The anode bottom and side channels profile used in the test runs 

Firstly, we would like to test the simplest case of pure gravity 
waves in the cell of variable bottom and top for the present two 
fluid case. When using the bottom profile shown in the Figure 1 
and the top from figure 3, the resulting wave behavior is shown in 
the Figure 4. The first gravity mode (1,0) wave in the rectangular 
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box is shown for reference. The presence of the variable bottom 
only, makes little change on the wave shape, just slight increase 
of the wave period can be detected because the average depth is 
reduced. However, when adding the effect of the top side 
channels, the wave amplitude starts to decrease gradually. The 
change of the shape of the gravity waves for different bottom is 
illustrated in the Figure 5. 

The full MHD interaction cases are more complex because of the 
multiple physical effects being coupled. The figure 6 shows the 
interface shape at a particular time moment at 500 s from the start 
of simulation, and the Figure 7 demonstrates the oscillation 
pattern compared with the previous software and the present 
update accounting for the variable coefficients wave equation. 
The comparison is done for the flat bottom case, and it gives an 
evidence that the different numerical solver (more complex and 
slower) is giving practically identical results to the previous. 

The Figure 8 presents the interface shape for the case when the 
bottom profile is variable (corresponding to the Figure 1, 
concave). It looks rather similar in shape, yet the amplitudes are 
different, as can be seen from the figure 9. The oscillation 
frequency is also slightly shifted. 

The largest difference can be observed when the top surface of 
the liquid electrolyte is subject to the variation as well (Figures 
10 and 11). The amplitudes has grown and the frequency shift is 
even more noticeable.  

The most sensitive parameter for the bottom and top variation 
effect can be detected by comparing the electric current 
distribution in the aluminium layer. The Figures 12 and 13 give 
evidence to the change in the Jy electric current component, 
which is the most important parameter for any stability theory of 
the aluminium cells. The concave bottom case leads to the 
increased horizontal current density at the ends of the cell, what 
makes the electromagnetic interaction with the Bz magnetic field 
more pronounced, particularly because the Bz field is usually the 
worst in the vicinity of the corners. 

The Jx current component in the metal is affected as well, 
however to a lesser amount (Figures 14 and 15). The Jz at the 
bottom (Figure 16) is mostly influenced by the presence of 
nonconducting ledge (included in the present model [9]), and the 
vertical elevation of the bottom is less important. 

 
Figure 4. The gravity wave (1,0) variation with the top and bottom. 

 
Figure 5. The gravity wave shape for different bottoms: flat, concave, 

concave nonsymmetrical. 
 

 
Figure 6. The interface shape at 500s  for the flat bottom. 

 
Figure 7. Oscillation pattern: the comparison of the 500 kA demonstration 

cell test results before and after the variable bottom upgrade. 

 
Figure 8. The interface shape at 500s for the concave shaped bottom, but 

not including the electrolyte channel effect. 
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Additionally we would like to point out that the present MHD 
model is coupling together all magnetic and electrical fields at all 
times of the wave evolution. If the magnetic field is not precisely 
coupled to the small variations of the electric current due to the 
waves, then the cell can be wrongly diagnosed as being unstable, 
as it is demonstrated in the Figure 17. There is a significant shift 
in the frequency and this is well known to be the source of the 
MHD instability in the aluminium electrolysis cells. The 
possibility to modulate the magnetic field to a proper frequency 
by external means could be a possibility to either enhance the cell 
stability or to reduce it and make the cell a failure for practical 
use. The software presented here can be used to detect such 
effects and to choose the favorable adjustments. 

 
Figure 9. Oscillation pattern: the comparison of the flat and concave 

shaped bottom not including the electrolyte channel effect. 

 
Figure 10. The interface shape at 500s for the concave shaped bottom 

including the electrolyte channels effect. 
 

 

 

 

Figure 11. Oscillation pattern: the comparison of the flat and concave 
shaped bottom including the electrolyte channel effect. 

 
Figure 12. The horizontal electric current Jy in the metal pad for the flat 

bottom case. 

 
Figure 13. The horizontal electric current Jy in the metal pad for the 

concave bottom case. 
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Figure 14. The horizontal electric current Jx in the metal pad for the flat 

bottom case. 

 
Figure 15. The horizontal electric current Jx in the metal pad for the 

concave bottom case. 

 
Figure 16. The horizontal and vertical electric current Jz in the metal pad 

for the concave bottom case. 
 

 
Figure 17. Oscillation pattern: the comparison for the magnetic field time 
dependence of the concave shaped bottom case including the electrolyte 

channels effect. 

Conclusions 

MHD model for the non-linear cell stability analysis software 
was updated to take into account the deformed bottom and top 
surfaces of the cell cavity. 

For the 500 kA demonstration cell, the non-linear cell stability 
analysis results show that the bottom deformation affects the cell 
stability. The presence of the electrolyte channels and the anode 
bottom deviation from flat is of even more pronounced effect.  

The most sensitive reaction is to the change in the horizontal 
current Jy component in the liquid metal. 

The magnetic field updating during the cell dynamic wave 
development is of high importance to predict the stability 
threshold. 
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