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Introduction

The power consumption of the Hall-Héroult cell being one
of the major operating costs, the aluminium industry is
constantly trying to reduce the specific power
consumption of smelters expressed in kWh'kg of
alumininum produced.

Today, best resulis are:

12.9 - 13.0 kWh'kg for high amperage PBF cells
14.0 - 14.5 KWh'Kkg for best V55 cells

(Older smelters still operating at 17 - 18 kWh'kg are feeling an increasing pressure from their
more efficient competitors. They have essentially two options:

1) Retrofit their cell design in order to improve their power consumption and
hence reduce their production costs

2) Berun out of business
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Retrofitting Existing Cell Designs to
Improve their Power Consumption

Retrofitting a cell design in order to improve its power consumption typically
involves improving the cell thermal balance and the cell MHD stability

MHD Stability

Thermal Balance

Base Case

Cell Design




Retrofitting Existing Cell Designs
Using Mathematical Models

It is now possible to drastically reduce the number of physical prototyping
trial and error design loops by using mathematical models to perform most of
that trial and error development work using virtual prototyping instead.

Thermo-electric
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Cell Design

Model




Investing in the Development of
Mathematical Models:

Financial Risk and Rewards

The Hall- Héroult process being so complex on one hand and the measurement of the
process behavior being so difficult to perform on the other hand, the development of
reliable Hall Héroult cell mathematical models was, and continues to be a real challenge.
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Investing in the Development of
Mathematical Models:
Financial Risk and Rewards
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Investing in the Development of
Mathematical Models:

Financial Risk and Rewards

Things
basically
can go
Wrong
the two
opposite
Ways:

2) The never-ending development of a “monstrous™” unmanageable model
that tries to take everything into account
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Investing in the Development of
Mathematical Models:

Financial Risk and Rewards

The “four pillars” of the sy
AP18 and AP30 successful ,__'_ " YRR
developmeni: i

1) Magnetic and MHD
models

2) Cell thermo-electric
and bushars balance
electrical models

3) Potshell/supersitucture
mechanical models

4) Transient thermo-

mechanical cell stari-
up model

s ———————— ¢ {1




Reducing the Financial Risk and Shortening the Payback
Time by Using Well Established Reliable and

Commercially Available Mathematical Models

ANSYS®-based 3D steady-state Dyna/Marc
thermo-electric models lump parameters+ model




Dyna/Marc Lump Parameters+ Model

DYNAMARC (DYNAmic Model of Aluminum Reduction Cells) is a
dynamic simulator of the behavior of aluminum reduction cells.

DYNAMARC is composed of three different models.

The first is the Process model, that solves the heat -
and mass balance in the cell. Ti also takes into [

account the evolution of the ACD (anode to
cathode distance) and the line amperage
Muciuation.

The second model is the Controller model. This & |
reproduces the plant coniroller response based on [FEESSES=S=——==—_—_, o T e =l
all the programmed algorithms taking into ) |
account the current cell state.

Finally, the Operator model allows the software to
simulate the actions undertalien by the operator
on his schedule or when the controller requires

his intervention.
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Dyna/Marc Lump Parameters+ Model

DynaMarc can be used to illustrate the behavior of the Hall Héroult process
in the context of a general purpose aluminium elecirolysis training course.

For example, it can

illustrate the impact of

undesirable alumina

feeding from the cover

material during an :

anode change on the : ) | —

Torme jduy)

With undesirable alumina feeding




Dyna/Marc Lump Parameters+ Model

DynaMarc can be used to illustrate the behavior of the Hall Héroult process
in the context of a general purpose aluminium elecirolysis training course.

For example, it can
illustrate the impact of
undesirable alumina
feeding from the cover
material during an
anode change on the
cell current efficiency.

Without undesirable alumina feeding




Dyna/Marc Lump Parameters+ Model

Dyna/Marc can also be used to test changes to the cell conirol logic

For example, it can
illustrate the impact of
changing the bath
sampling frequency
and the formula that is
used to adjust the
amount of AlF; added
to the cell on the long-
term evolution of the
bath chemistry.

or to train operators using a cell controller.
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Dyna/Marc Lump Parameters+ Model

Dyna/Marc can also be used to test changes to the cell conirol logic
or to train operators using a cell controller.
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used to adjust the
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to the cell on the long-

term evolution of the
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Dyna/Marc Lump Parameters+ Model

As a mathematical tool to improve the cell thermal balance, Dyna/Mare is
mostly used in steady-state mode. At the beginming of a retrofit project, it
provides fast answers to “what if”’ questions and can produce trend analysis.
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Dyna/Marc Lump Parameters+ Model

Later on, the Monte Carlo statistical tool of Dyna/Marc can be used to perform a risk assessment
analysis, which is important because no mathematical model is 100% accurate and often a 3%
compound inaccuracy on the main models predictions can translate into a 253% offset between the
predicted and prototype measured average thickness of the ledge at the metal level for example.
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ANSYS®-based Steady-State Finite Element
Thermo-Electric Models

One of the main three pillars of Hall- Héroult cell design

stress models which are .
o

generally associated with cell e, W
i
shell deformation and cathode *&ﬁ

g ﬁ -'.-'I 15
e b . aq;; By ~;;f"
heaving issues. y, Tl

hIagneto-hydro-dynamic (MHD)
models which are generally
associated with the problem of
cell stability.

Thermal-electric models which
are generally associated with the
problem of cell heat balance.




ANSYS®-based Steady-State Finite Element
Thermo-Electric Models
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ANSYS®-based Steady-State Finite Element
Thermo-Electric Models
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ANSYS®-based Steady-State Finite Element
Thermo-Electric Models

Detailed ledge profile in corner S1da A1ica Madal : vaw 2D
Fraaza prafila abarsad
aftere §. lbaeakians

HERT INFTI o
Taktal Haakbt Inzsb JZ320B.66

9I0E HEART LOAT
Taktal 3ida Haabt Laakb

Wall aizarg Eabh 1airal
Wall aprmalbs Ea Babh
Wall apemalbs Ea mabal
Wall apemalbs Ea Black
Wall Balaw lack
ablffanar abaim Eabh laval
ablffanal apaalba bEa eabh
ablffanar apzaalbs Ea rabal
End abiffanar apaalbe ba lack
End abiffanar = albka Ea bpisk
ablffanar Raled Claar laral

Taktal End Haalk Laak

Taktal Haak Laak

dalubian EEEar

Ry, OEaz Roraraqa CHEEGRE ok
atlg.'u: Ind Flap. DEx: Cabheds Juef
o [y

280.221 T.355 lEEEE .BEET

Targabad «all sHerant: 3J00000.00 Roesa
Oivkainad «all sHerank! 300000.00 Roesa

Cathﬂde COFnexr mudel Aalubian TErar oo A&




ANSYS®-based Steady-State Finite Element
Thermo-Electric Models
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Full cell quarter model
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ANSYS®-based Steady-State Finite Element
Thermo-Electric Models

Full half-cell + bushars model
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ANSYS®-based Steady-State Finite Element
Thermo-Electric Models

Alcoa P-135 corner model Part of the P-135 model topology
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Calibration and Validation of the Mathematical Models

To be considered
validated, a new model
must be able to well
reproduce the existing
cell measured heat
balance. Typically, the
most difficult part of
the model development
and validation exercise
is obtaining reliable
data of a cell heat
balance from a thermal
blitz campaign.

Thermal blitz heat flux measuremenis
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Examples of Applications of an ANSY S®-based
3D Full Cell Slice Thermo-Electric Model

Base Case

Retrofit 1

Retrofit 2

Cell amperage (kA)

300

330

265

Cell internal heat (kW)

628

713

427

Cell kWh/kg

13.75

13.40

11.94

Those two exitreme cases clearly demonsirate that as far as the cell thermal
balance is concerned, the window of opportunities is quite wide. Only a
complimentary technico-economical study can indicate which of the two
retrofit scenarios offers the best return on investment (obviously, the
outcome of that siudy will mostly depend on the selected long-term cost of

the electrical power).
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Conclusions

& These days, with the support of well established and reliable
mathematical models, older smelters operating at 17-18 kWh/kg
due to a poor thermal design should be able to come up with
successful retrofit design proposal(s) well within a year, test that
(those) design proposal(s) in prototypes during a minimum of two
years and then be able to proceed to a full implementation phase.

As far as the thermal balance problem of the cell is concerned, there
is no known technical reason that should prevent a significant
reduction of their power consumption.
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